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1 Introduction

In the context of the AdS5/CFT4 correspondence a very interesting development was

the understanding of the existence of an integrable structure at the both sides of the

correspondence [1, 2]. In the N = 4 SU(N) field theory the one loop dilatation operator in

the scalar sector was identified with the Hamiltonian of an integrable spin chain [1]. Many

and very interesting developments followed, see for example [3]–[18]. In this note we will

be mainly interested in studying the integrability properties of the field theories with less

supersymmetry. In four dimensions to remain in the perturbative regime, which allows a
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field theory computation, one is forced to take orbifold or marginal deformations of the

original N = 4 theory [19]–[22].

Recently we gained a better understanding of the AdS4/CFT3 correspondence [23]–

[46]. Indeed, it turns out that the three dimensional conformal field theories are Chern-

Simons theories with matter. In particular, the authors of [32] proposed a field theory dual

to the C
4/Zk singularities, the so called ABJM theory. This is an N = 6 Chern-Simons

matter theory with gauge group U(N)×U(N) and two Chern-Simons levels satisfying the

constraint k1 + k2 = 0. This theory appears to be integrable at least at the leading order

in perturbation theory. Namely, the two loop dilatation operator can be identified with

the Hamiltonian of an integrable spin chain [47]. Many nice developments followed also in

this context, see for example [48]–[61].

In particular we are interested to understand if integrability is present in the less super-

symmetric theories. One could think that the possible generalizations of the basic example

in three dimensions, the ABJM theory, are very similar to the related generalizations of

the N = 4 four dimensional case but they are slightly different.

To compute the field theory dilatation operator, it is important that the theory has

a weak coupling limit in which the elementary fields have canonical scaling dimensions.

In four dimensions this is possible if the superpotential is a cubic function of the chiral

superfields, while in three dimensions it is possible if the superpotential is a quartic function.

This simple observation points out that in three dimensions there could be more theories

which can be analyzed perturbatively than in four dimensions. Indeed, it turns out that in

three dimensions also the non-orbifold theories can have a perturbative limit [28, 38, 46].

The second observation is due to the presence of Chern-Simons levels that do not

exist in the four dimensional case. There are Chern-Simons levels ki associated to every

gauge group. They are integer numbers and we can vary their values without spoiling

the superconformal symmetry. It turns out that, for a class of N = 2 Chern-Simons

matter theories, if
∑

ki = 0 the field theory moduli space has a four complex dimensional

branch that is a Calabi-Yau cone and can be understood as the space transverse to the M2

brane [43, 44]. If instead
∑

ki 6= 0 the four dimensional branch typically disappears and

this effect can be interpreted as turning on a Roman’s mass F0 in the type IIA limit [38, 62].

Let us suppose that a theory has an integrable structure for some specific relations among

the ki such that they satisfy
∑

ki = 0. It easy to see that there exist two possible interesting

deformations of this integrable point. We can move in the space of possible integer values

of the ki in such a way that we preserve the constraint or in a way in which we break the

constraint. It is important to underline that these kind of deformations do not exist in

four dimensions and offer a new laboratory for studying integrability in the weak coupling

regime.

In this paper we start the analysis of these deformed theories. We take as basic

example the ABJM theory and deform it in such a way that k1 + k2 6= 0. We plan to

return to the other type of deformation in the near future. To be sure to remain in the

perturbative regime it is important to deform the theory in such a way that it preserves

at least N = 3 supersymmetry in three dimensions. Indeed, for N > 2 the Chern-Simons

matter field theories are completely specified by the gauge group, the matter content, and
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Figure 1. The quivers for the ABJM theory with generic Chern-Simons levels.

the Chern-Simons levels, and they have a weak coupling limit for large values of ki. These

theories have a quartic superpotential and could be dual to the non-orbifold M theory

backgrounds.

The organization of the paper is as follows. In section 2 we introduce our main example.

In section 3 we rewrite the theory in the explicit invariant form under the global symmetries.

In section 4 we compute the two loop mixing operator for the scalar sector of the theory.

In section 5 we compute the anomalous dimension of some operators. We observe that the

degeneracy which due to integrability is present in the ABJM theory is lifted in the generic

k1 6= −k2 case. We finish with some conclusions and the appendix collects some useful

formulae which we used in the main text.

2 The deformed ABJM

We are interested in studying the Chern-Simons theories described by the following action

S =
k1

4π
SCS(V(1)) +

k2

4π
SCS(V(2)) + Skin(Zi, Z†

i ,Wj,W
j†) +

∫

d2θW (Zi,Wj) + c.c. ,

where

SCS(V(l)) =

∫

d3x Tr

[

ǫµνλ

(

A(l)µ∂νA(l)λ +
2i

3
A(l)µA(l)νA(l)λ + iχ̄(l)χ(l) − 2D(l)σ(l)

)]

,

Skin(Zi, Z†
i ,Wj ,W

j†) =

∫

d4θ Tr
(

Z†
i e

−V(1)ZieV(2) +W j†e−V(2)Wje
V(1)

)

,

W (Zi,Wj) =
2π

k1
Tr
(

ZiWiZ
jWj

)

+
2π

k2
Tr
(

WiZ
iWjZ

j
)

. (2.1)

It is a three dimensional Chern-Simons theory with matter. The gauge group is

U(N)1 × U(N)2 and the N = 2 bifundamental chiral superfields Zi and Wj transform

in the fundamental of the first factor of the gauge group and antifundamental of the sec-

ond one and vice versa for Z†
i and W †j(see figure 1). k1, k2 are integer numbers which we

call from now on Chern-Simons levels. The three dimensional theory represented by the

Lagrangian (2.1) is N = 3 superconformal. It admits a perturbative limit for the large

values of the ki. The Lagrangian has SU(2)R × SU(2) global symmetry, where the first

factor is the R symmetry associated to the N = 3 superconformal symmetry, while the

second SU(2) is a global symmetry under which Zi and Wj transform in the fundamental

representation.
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In the particular case k1 = −k2 the supersymmetry of the Lagrangian is enhanced

to N = 6 and the global symmetry group to SU(4)R. In this case the lower bosonic

components1 of the chiral superfields can be organized in the fundamental representation

4: Y A = (Z1, Z2,W
†
1 ,W

†
2 ) and the upper ones in the antifundamental. Indeed, in this limit

the Lagrangian (2.1) reduces to the ABJM one [32] which is supposed to describe the three

dimensional superconformal field theories living on N M2 branes at C
4/Zk singularities.

In this particular case the theory is integrable in the planar limit at least at the two

loop order. The first check for the presence of integrability in the ABJM comes from

the computation of the two loop mixing matrix of anomalous dimensions for the scalar

sector. Due to integrability the mixing matrix of anomalous dimensions is identical to

an integrable Hamiltonian of the SU(4) spin chain with the sites transforming under 4

and 4̄ [47].

A natural question is if the generic theory in eq. (2.1) is still integrable. In the case

k1 6= −k2 the supersymmetry and the global symmetries are reduced, and the theory is

supposed to be dual to some flux background. The four dimensional Calabi-Yau branch in

the field theory moduli space disappears and the theory is proposed to be dual to a type

IIA background with the Romans mass F0 turned on: k1 + k2 = F0 [38]. It is important to

stress that this kind of deformation is not an orbifold deformation and this is a peculiarity

of the Chern-Simons theories.

In this paper we would like to do the first step towards understanding the question

concerning integrability for this theory. We compute the dilatation operator in the scalar

sector at the leading order which we use then to find anomalous dimensions of some oper-

ators. To make the computation more transparent we rewrite the eq. (2.1) in such a way

that the SU(2)R × SU(2) symmetry becomes apparent. We group the scalar fields into the

tensors Oa
i and O†i

a , where the indices from the beginning of the alphabet correspond to

the SU(2)R and from the middle to the SU(2) symmetry group

O =

(

Z†
1 W1

Z†
2 W2

)

, O† =

(

Z1 Z2

W †1 W †2

)

. (2.2)

They transform in the (2,2) of SU(2)R × SU(2) as UOV †, V O†U †, where U ∈ SU(2) and

V ∈ SU(2)R.

The class of the gauge invariant operators we are interested in has the form

O = Tr
(

O†i1
a1
Oa2

i2
O†i3

a3
Oa4

i4
.......O

†i2L−1
a2L−1 O

a2L

i2L

)

χ
a1i2a3i4...a2L−1,i2L

i1a2i3a4...i2L−1,a2L
, (2.3)

where χ is some tensor of SU(2)R × SU(2). These operators need to be renormalized

OM
ren = ZM

N (Λ)ON
bare , (2.4)

where M and N label all the possible operators, Λ is an UV cutoff, and Z subtracts all the

UV divergences from the operator correlator functions. The object we are interested in is

1We use the same symbols Zi, Wj for the superfields and for their lowest scalar components. We hope

this will not cause too much confusion.
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the matrix of anomalous dimensions Γ. It is defined as

Γ =
d lnZ

d ln Λ
. (2.5)

The eigenstates of Γ are conformal operators and the eigenvalues are the corresponding

anomalous dimensions.

It is convenient to represent the operators (2.3) as states in a quantum spin chain with

2L sites. Every site transforms in (2, 2) representation of SU(2)R × SU(2). The spin chain

is alternating between the O† and O. In this language the mixing matrix (2.5) can be

regarded as the Hamiltonian acting on the Hilbert space (V̄ ⊗ V )⊗L.

3 SU(2)R × SU(2) invariant potential

In this section we would like to write the action (2.1) in terms of component fields and

in particular we would like to have an explicit expression for the potential in terms of

SU(2)R × SU(2) invariant objects. We start by integrating out all the auxiliary fields. In

particular the spinorial fields χ(l) and the bosonic fields σ(l), D(l) are all auxiliary fields

and can be eliminated using the equations of motion. From the chiral super fields ZI , Wj

we get the complex scalars Zi, Wj and the Dirac spinors ζi, ωj. The potential V can be

divided into a part V bos containing only bosonic operators and a part V ferm containing

bosonic and fermionic operators. Let consider first the bosonic part.

3.1 The bosonic potential

The bosonic potential V bos gets contributions from the superpotential and from the Chern-

Simons interactions V bos = V bos
W + V bos

CS . The superpotential part is

V bos
W = Tr





∑

i,j

∣

∣

∣
∂ZiW

∣

∣

∣

2
+
∣

∣

∣
∂Wj

W
∣

∣

∣

2



 , (3.1)

where W is the superpotential given in eq. (2.1). The Chern-Simons part is

V bos
CS = Tr

(

Z†
iZ

iσ2
(1) − 2Ziσ(1)Z

†
i σ(2) + ZiZ†

i σ
2
(2)

)

+Tr
(

W †iWiσ
2
(2) − 2Wiσ(2)W

†iσ(1) +WiW
†iσ2

(1)

)

, (3.2)

where

σ(1) =
2π

k1

(

Z†
iZ

i −WiW
†i
)

, σ(2) =
2π

k2

(

W †iWi −W iW †
i

)

. (3.3)
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If we write a general ansatz by use of operators in eq. (2.2) there exist 18 structures

compatible with the symmetries and the canonical dimension of the bosonic fields.2

V bos
an

= a1 Tr Oa
iO

†i
a O

b
jO

†j
b O

c
kO

†k
c + a2 Tr Oa

i O
†i
a O

b
jO

†k
b O

c
kO

†j
c + a3 Tr Oa

iO
†j
a O

b
kO

†i
b O

c
jO

†k
c

+a4 Tr Oa
iO

†j
a O

b
jO

†k
b O

c
kO

†i
c + a5 Tr Oa

i O
†i
b O

b
jO

†j
c O

c
kO

†k
a + a6 Tr Oa

iO
†i
b O

b
jO

†k
c O

c
kO

†j
a

+a7 Tr Oa
iO

†j
b O

b
kO

†i
c O

c
jO

†k
a + a8 Tr Oa

i O
†j
b O

b
jO

†k
c O

c
kO

†i
a + a9 Tr Oa

iO
†i
a O

b
jO

†j
c O

c
kO

†k
b

+a10TrOa
iO†iaO

b
jO

†k
c O

c
kO

†j
b + a11TrOa

iO
†j
a O

b
kO

†i
c O

c
jO

†k
b + a12TrOa

iO
†j
a O

b
jO

†k
c O

c
kO

†i
b

+a13 TrOa
iO

†i
c O

b
jO

†j
a O

c
kO

†k
b + a14 TrOa

i O
†i
c O

b
jO

†k
a O

c
kO

†j
b + a15 TrOa

iO
†j
c O

b
kO

†i
a O

c
jO

†k
b

+a16 TrOa
iO

†j
c O

b
jO

†k
a O

c
kO

†i
b + a17 TrOa

i O
†j
a O

b
jO

†i
c O

c
kO

†k
b + a18 TrOa

iO
†j
a O

b
kO

†k
c O

c
jO

†i
b ,

(3.4)

where an are 18 arbitrary real parameters, which we need to fix by use of the explicit

expressions for the bosonic potential in components V bos
an

= V bos. If we apply †-operation

on the ansatz (3.4) we find that the first 16 terms are mapped into themselves, while the

last two are mapped into each other. It means that the reality of the potential forces

a18 = a17. On top of that it appears that some of the 18 structures are linear dependent.

If we call On the operators corresponding to the coefficients an. We can find the seven

linear relations

3O9 −O13 −O5 −O1 = 0 , 3O12 −O16 −O4 −O8 = 0 ,

3O2 −O3 −O4 −O1 = 0 , 3O6 −O7 −O5 −O8 = 0 ,

3O14 −O16 −O15 −O13 = 0 , 3O11 −O3 −O7 −O15 = 0 ,

O10 −O9 −O11 −O12 +O17 +O18 = 0 . (3.5)

In particular, if we try to solve the equation V bos
an

= V bos as a function of the an we find

a family of solutions parameterized by seven parameters an due to the relations (3.5). To

find the coefficients for the potential we need first to reduce the ansatz by use of (3.5) to

11 linearly independent structures and then solve V bos
an

= V bos for the coefficients. This

way to proceed means that there are no unique form of the potential if we use the notion

of the SU(2)R × SU(2)-fields. The concrete form of the mixing operator descends from the

choice of these 11 structures but the eigenvalues of the mixing operator are independent of

this choice. See additional comments in appendix C. We found a choice of an where 11 of

the 18 coefficients are zero. The remaining non-zero coefficients are

a1 = −
4π2

3k2
1

, a8 = −
4π2

3k2
2

, a10 = −
8π2

k1k2
a15 =

16π2

3k1k2
,

a13 =
16π2(k1 + k2)

3k2
1k2

, a16 =
16π2(k1 + k2)

3k1k2
2

. (3.6)

2In principle we can write 36 structures which would correspond to the singlets of SU(2)R×SU(2). From

the group theory computation we get that there are only 25 singlets. It means that there 11 linear relations

among the structures. 36 structures are equivalent to 18 different structures modulo cyclic permutation

and we find that invariance under cyclic permutation reduces the 11 relations to only 7.

– 6 –
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In the following we will use these coefficients. The bosonic potential written in the explicit

SU(2)R × SU(2) invariant form is

V bos = −
4π2

3k2
1

Tr Oa
i O

†i
a O

b
jO

†j
b O

c
kO

†k
c −

4π2

3k2
2

Tr Oa
i O

†j
b O

b
jO

†k
c O

c
kO

†i
a

−
8π2

k1k2
Tr Oa

iO
†i
a O

b
jO

†k
c O

c
kO

†j
b +

16π2

3k1k2
Tr Oa

iO
†j
c O

b
kO

†i
a O

c
jO

†k
b

+
16π2(k1 + k2)

3k2
1k2

Tr Oa
iO

†i
c O

b
jO

†j
a O

c
kO

†k
b +

16π2(k1 + k2)

3k1k
2
2

Tr Oa
iO

†j
c O

b
jO

†k
a O

c
kO

†i
b .

(3.7)

With this choice of the coefficients the ABJM limit is apparent. Namely for k1 + k2 = 0

the last two terms drop out and we obtain the ABJM potential written in SU(2)R × SU(2)

invariant way. Indeed in this limit the R-symmetry and flavor indices of the O fields do not

mix anymore due to the R symmetry enhancement to SU(4) . The remaining coefficients

are exactly the ones in [32]

3.2 The fermionic potential

Le us now proceed with the fermionic potential V ferm. Our final goal is to compute the two

loops mixing matrix in the planar limit. Part of the contribution to the renormalization

of the scalar operators O in eq. (2.3) comes from fermions running in the loops. This

interaction is due to the fermionic potential. The fermionic potential is a quartic function

in the fields, each term contains two bosons and two fermions. The contributions are of

two types, the first one V ferm
ffbb contains terms consisting of two fermions followed by two

bosons, the second one V ferm
bfbf has the coupling fermions-boson-fermion-boson. It is easy

to see that the terms of the second type do not contribute to the mixing matrix at the

planar level for the scalar operators. That’s why it is enough to consider only the terms of

the first type.

The fermionic potential has two contributions, one is coming from the superpoten-

tial V ferm
W and the other one coming from the Chern-Simons interactions V ferm

CS . After

integrating out the auxiliary fields we get

V ferm
W =

4π

k2

(

ωiζ
iWjZ

j + ζiωjZ
jWi − ζ†i ω

†iZ†
jW

†j − ω†iζ†jW
†jZ†

i

)

+
4π

k1

(

ωiζ
jWjZ

i + ζiωiZ
jWj − ζ†i ω

†jZ†
jW

†i − ω†iζ†iW
†jZ†

j

)

+ . . .

V ferm
CS =

2πi

k1

(

ζiζ†i − ω†iωi

)(

ZjZ†
j −W †jWj

)

+
2πi

k2

(

ζ†i ζ
i − ωiω

†i
)(

Z†
jZ

j −WjW
†j
)

+
4πi

k1

(

ζ†i ζ
jZ†

jZ
i + ωiω

†jWjW
†i
)

+
4πi

k2

(

ζiζ†jZ
jZ†

i + ω†iωjW
†jWi

)

+ . . .

(3.8)

The ellipsis corresponds to couplings in V ferm
bfbf which are not relevant for our computa-

tion. We would like to rewrite the fermionic potential in the SU(2)R × SU(2) invariant

way. In the ABJM case the superpartners of the scalar field transform in the conjugated

– 7 –
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representation of the one of the scalars. This is the manifestations of the fact that the

SU(4) corresponds to the R-symmetry group of the fields. It means that in the case of

the fermionic objects transforming under SU(2)R × SU(2) the R-symmetry index should

transform in the conjugated representation of the scalar superpartner. However, since we

expect that the scalars and spinors belong to the same flavor multiplet they should trans-

form under the same representation of the SU(2) flavor symmetry group. This suggests

the following ansatz

ψ†1i = −iζi , ψ†2i = ω†i ,

ψ1j = iζ†j , ψ2j = ωj . (3.9)

The index i, j transform under SU(2) flavor symmetry and the written out indices 1, 2

under the SU(2)R-symmetry. The SU(2)R × SU(2) invariant ansatz is then

V ferm
fn

= f1TrO†i
a O

a
i ψ

†bjψbj +f2TrO†i
a O

a
jψ

†bjψbi+f3TrO†i
a O

b
iψ

†ajψbj + f4TrO†i
a O

b
jψ

†ajψbi

+f5Tr Oa
i O

†i
a ψbjψ

†bj + f6Tr Oa
iO

†j
a ψbjψ

†bi + f7Tr Oa
i O

†i
b ψajψ

†bj + f8Tr Oa
iO

†j
b ψajψ

†bi

+ . . . (3.10)

The equation V ferm
fn

= V fer
W + V fer

CS gives the solution

f1 = −
2πi

k1
, f2 = 0 , f3 =

4πi

k1
, f4 =

4πi

k2
,

f5 = −
2πi

k2
, f6 = 0 , f7 =

4πi

k2
, f8 =

4πi

k1
. (3.11)

And the SU(2)R × SU(2) invariant fermionic potential is:

V ferm = −
2πi

k1
TrO†i

a O
a
i ψ

†bjψbj +
4πi

k1
TrO†i

a O
b
iψ

†ajψbj +
4πi

k2
TrO†i

a O
b
jψ

†ajψbi

−
2πi

k2
TrOa

i O
†i
a ψbjψ

†bj +
4πi

k2
TrOa

i O
†i
b ψajψ

†bj +
4πi

k1
TrOa

i O
†j
b ψajψ

†bi + . . .

(3.12)

The fermionic potential reduces to the ABJM one in the limit k1 + k2 = 0. Namely, by

use of the relation δi
lδ

j
k − δi

kδ
j
l = ǫijǫkl and appropriate redefinition of the fields Oa

i =

Y A, ǫijψ
†aj = ψ†A where A is an SU(4) index. The last two terms in each line are com-

bined into the terms which mix the SU(4) flavor and the first terms in each line give then

flavor non-mixing contributions.

4 The mixing operator

Right now we have all the tools to compute the dilatation operator Γ. The contributions

to the dilatation operator come from the logarithmic divergences (ln Λ) of the renormal-

ization function Z(Λ). The lowest contributions come at two loops and the non vanishing

logarithmic divergences come from the graphs in figure 2. The renormalization of the com-

posite operators O in equation (2.3) comes from three different kind of graphs where (a)
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(a) (b) (c)

Figure 2. The graphs that contribute to the mixing operator (a) only scalar bosons are running

inside the loops, (b) scalar bosons and fermions are running in the loops, (c) scalar boson and gauge

bosons in the loops.

only scalar fields, (b) scalar and fermionic fields and (c) scalar and gauge fields are running

in the loops. We can analyze them separately. Before doing it let us fix some notation.

We are going to compute the Hamiltonian of an SU(2)R × SU(2) spin chain in represen-

tation (2,2), with alternating sites corresponding to the fields O, O† in the operators O.

At every site of the spin chain we have two indices of SU(2) and the final Hamiltonian

can be nicely expressed in terms of two basic operators acting on the group indices: the

trace operator K : V ⊗ V̄ → V ⊗ V̄ or K̄ : V̄ ⊗ V → V̄ ⊗ V ; and the permutation op-

erator P : V ⊗ V → V ⊗ V or P : V̄ ⊗ V̄ → V̄ ⊗ V̄ . We can distinguish between the

operators acting on the R indices (K, P ) and the operators acting on the flavor indices

(K̂, P̂ ):

Ka′b
b′a = δa′

b′ δ
b
a , Ki′j

j′i = δi′

j′δ
j
i ,

P a′b′

ba = δa′

b δ
b′

a , P i′j′

ji = δi′

j δ
j′

i .

The trace operator K acts on the nearest neighbor sites, while the permutation operator P

acts on next to nearest neighbor sites. The ’t Hooft couplings λi = N/ki are our perturba-

tive expansion parameters. The final expression for the mixing operator Γ is a polynomial

in K and P with coefficients that are functions of λ1, λ2.

4.1 Six-vertex two-loop diagram

In this subsection we give the part of the Hamiltonian which comes from the diagram with

only scalar fields in the loops. The graph (a) in figure 2 gets the contribution from the

various monomials in the sextic bosonic potential (3.7). The computation is done in two

steps. Firstly, one computes the logarithmic divergent part, and then carefully computes

the SU(2)R × SU(2) combinatoric structure. To write down the final result in a most

transparent way we distinguish between trace operators K̄l,l+1 and Kl,l+1. The first one

acts as usual on the sites V̄ ⊗ V and gives zero on V ⊗ V̄ , while the second one acts as

usual on V ⊗ V̄ and gives zero on V̄ ⊗ V . The part of the mixing operator coming from

– 9 –
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this graph is

Γbos =
1

2

2L
∑

l=1

(

− λ2
1K̄l,l+1

ˆ̄K l,l+1 − λ2
2Kl,l+1K̂l,l+1 + 2λ1λ2Pl,l+2P̂l,l+2

−λ1λ2

(

11̂ +Kl,l+1Pl,l+2 K̂l,l+1P̂l,l+2 + K̄l,l+1Pl,l+2
ˆ̄Kl,l+1P̂l,l+2

+Pl,l+2Kl,l+1 P̂l,l+2K̂l,l+1 + Pl,l+2K̄l,l+1 P̂l,l+2
ˆ̄Kl,l+1

)

+4(λ1λ2 + λ2
1)Pl,l+2

ˆ̄Kl,l+1 + 4(λ1λ2 + λ2
1)Pl,l+2K̂l,l+1

)

. (4.1)

4.2 Fermionic contribution

The fermionic potential (3.12) gives two types of contributions to the graph (b) in figure 2:

a contribution proportional to the identity in the SU(2)R×SU(2) indices, namely a vacuum

energy contribution coming from the first two monomials in the two lines of (3.12) and an

interacting contribution containing the K, K̂ trace operators. The constant part of the

full mixing matrix gets contribution also from other graphs than the ones in figure 2, for

example, from the renormalization to the propagator < O†O >. We are not going to

compute these diagrams. Later, we fix this constant part using supersymmetry. For this

reason we concentrate here only on the contributions coming from the last two monomials

in each lines in (3.12). After computing the logarithmic divergent part of the graph (b)

in figure 2 and computing the combinatorial SU(2)R × SU(2) structure, we obtain the

fermionic contribution to the mixing operator

Γferm =
2L
∑

l=1

(

2(λ2
2 +λ1λ2)K̄l,l+11̂ +λ2

1K̄l,l+1
ˆ̄Kl,l+1 +2(λ2

1 +λ1λ2)Kl,l+11̂ +λ2
2Kl,l+1K̂l,l+1

)

.

(4.2)

4.3 The gauge bosons contribution

The last contribution to the mixing operator comes from the graph (c) in figure 2. The

gauge bosons do not carry SU(2)R × SU(2) indices and we just need to compute the two

loop diagram with the correct coupling constants coming from the scalar-gauge interactions

in the Lagrangian. The final result is

Γgauge = −
1

2

2L
∑

l=1

(

λ2
2K̄l,l+1

ˆ̄Kl,l+1 + λ2
1Kl,l+1K̂l,l+1

)

. (4.3)

4.4 Two-loop dilatation operator

The complete two loop mixing operator is obtained summing up Γbos, Γferm and Γgauge.

Before writing down the final expression we need to fix the constant contribution. Super-

symmetry implies that the anomalous dimension of the symmetric traceless operators is

equal to zero. This fact fixes the constant contribution. The complete3 Hamiltonian can

3We would like to stress here that since there are relations between the trace and permutation operators

acting on two-dimensional indices the above form of the Hamiltonian is not unique. The action of the

Hamiltonian is of course independent of the concrete representation in terms of Ks and P s.
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be written as

Γfull =
1

2

2L
∑

l=1

(

(λ2
1 − λ2

2)K̄l,l+1
ˆ̄K l,l+1 + (λ2

2 − λ2
1)Kl,l+1K̂l,l+1

+4(λ1λ2 + λ2
1)(Pl,l+2

ˆ̄Kl,l+1 +Kl,l+11̂) + 4(λ1λ2 + λ2
2)(Pl,l+2K̂l,l+1 + K̄l,l+11̂)

−λ1λ2

(

2 − 2Pl,l+2P̂l,l+2 +Kl,l+1Pl,l+2 K̂l,l+1P̂l,l+2 + K̄l,l+1Pl,l+2
ˆ̄Kl,l+1P̂l,l+2

+Pl,l+2Kl,l+1 P̂l,l+2K̂l,l+1 + Pl,l+2K̄l,l+1 P̂l,l+2
ˆ̄Kl,l+1

)

)

.

(4.4)

The last two lines are the only contributions to the mixing operator in the ABJM case.

Indeed in the limit k1 + k2 = 0 the Hamiltonian reduces to

ΓABJM
full =

λ2

2

2L
∑

l=1

(

2 − 2Pl,l+2P̂l,l+2 +Kl,l+1Pl,l+2 K̂l,l+1P̂l,l+2 + Pl,l+2Kl,l+1 P̂l,l+2K̂l,l+1

)

(4.5)

that is exactly the mixing operator in [47] written in SU(2)R×SU(2) invariant form, where

we didn’t distinguish between K, P and K̄, P̄ .

It is nice to observe that one can define a parity operator P acting on the spin chain.

Its action reverses the orientation of the chain from clockwise to anticlockwise or vice versa.

In particular it acts on the operators as

P Tr
(

O†i1
a1
Oa2

i2
...O

†i2L−1
a2L−1 O

a2L

i2L

)

= Tr
(

Oa2L

i2L
O

†i2L−1
a2L−1 ...O

a2
i2
O†i1

a1

)

.

The parity operation4 on the Hamiltonian (4.4) exchanges λ1 and λ2. The parity trans-

formed Hamiltonian is

P Γfull P =
1

2

2L
∑

l=1

(

(λ2
2 − λ2

1)K̄l,l+1
ˆ̄Kl,l+1 + (λ2

1 − λ2
2)Kl,l+1K̂l,l+1

+4(λ1λ2 + λ2
2)(Pl,l+2

ˆ̄Kl,l+1 +Kl,l+11̂) + 4(λ1λ2 + λ2
1)(Pl,l+2K̂l,l+1 + K̄l,l+11̂)

−λ1λ2

(

2 − 2Pl,l+2P̂l,l+2 +Kl,l+1Pl,l+2 K̂l,l+1P̂l,l+2 + K̄l,l+1Pl,l+2
ˆ̄Kl,l+1P̂l,l+2

+Pl,l+2Kl,l+1 P̂l,l+2K̂l,l+1 + Pl,l+2K̄l,l+1 P̂l,l+2
ˆ̄Kl,l+1

)

)

.

(4.6)

For λ1 6= ±λ2 the parity symmetry of the Hamiltonian is broken by the terms in the first

and second line. The only values of λ1 and λ2 which correspond to the parity invariant

Hamiltonian are λ1 = ±λ2.

4If we act with the parity operator on the Hamiltonian the transformed one should act on the parity

transformed states as the original Hamiltonian on the non transformed states. The new vertices of a such

transformed Hamiltonian are obtained from the full potential by acting on all the terms with the parity

operator. This corresponds exactly to the exchange of λ1 and λ2 in eq. (4.4) or alternatively to the exchange

of K, K̂ and K̄, ˆ̄K.
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5 Length four operators

A typical sign of integrability of a system is the presence of different operators with the

same anomalous dimensions. [7, 37] In the ABJM case this happens for example for op-

erators of length four [47]. In that case the system is an SU(4) spin chain alternating

between fundamental 4 representation and antifundamental 4̄ representation. The 4 is

associated with the vector: Y A = (Z1, Z2,W †
1 ,W

†
2 ) and the length four operators are

Tr
(

Y A1Y †
B1
Y A2Y †

B2

)

. If we decompose these operators in representations of SU(4) we find

that they contain two singlets 1, two adjoints 15, one 20 and one 84 representations. It

happens that the two adjoint operators have the same anomalous dimension 6λ2. The

natural question is, what happens to these operators in the case in which k1 6= −k2? Are

they still degenerate? To answer these questions we consider the following operators

Tr O†i1
a1
Oa2

i2
O†i3

a3
Oa4

i4
. (5.1)

They decompose in representation of SU(2)R × SU(2). In particular the 15 of SU(4)

decomposes under SU(2)R × SU(2) as

15 → (3,1) + (1,3) + (3,3) .

For this reason in this section we will be interested to apply the Hamiltonian (4.4) to

operators in (5.1) in representations (3,1), (1,3) and (3,3). Operators with the same

quantum numbers typically mix among each other under renormalization. We need to

consider all the operators of the same length that transform in the same representation.

The operators in the representation (3,1) and (1,3) come only from the decomposition of

the 15 of SU(4), but there exist other three operators in the (3,3) representation coming

respectively: one from the 20 and two from the 84. As result we have two operators in the

(3,1), two in the (1,3), and five in the (3,3). In the following subsections we are going

to analyze separately their anomalous dimensions and to check if the degeneracy which is

present in the integrable ABJM case is still there or is lifted.

5.1 Operators in (3,1)

Let us start with the operators in representation (3,1). From the decomposition in the

list (D.2) in the appendix we know that there are six structures transforming in the repre-

sentation (3,1), four come from 15 and two from 45 and 45 of SU(4). Only the structures

descending from the 15 of SU(4) can form operators invariant under trace. Indeed cyclicity

relates four states and we get just two operators:

Tr |1 − 15〉(3,1) = Tr O†i
a O

a
iO

†m
b Oc

m − trace ,

Tr |2 − 15〉(3,1) = Tr O†m
b Oa

i O
†i
a O

c
m − trace . (5.2)

The first label enumerates the operators and the second one gives the corresponding SU(4)

multiplet.
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Applying the mixing operator we obtain

Γ Tr |1 − 15〉(3,1) = 2(λ2
1 − λ1λ2 + λ2

2)Tr |1 − 15〉(3,1) + (5λ2 − λ1)(λ1 + λ2)Tr |2 − 15〉(3,1)

+6λ2(λ1 + λ2)
(

Tr O†i
a O

c
iO

†j
b O

a
j + Tr O†i

b O
a
i O

†j
a O

c
j

)

= 2(λ2
2 + 5λ1λ2 + 7λ2

1)Tr |1 − 15〉(3,1) + (5λ2 − λ1)(λ1 + λ2)Tr |2 − 15〉(3,1)

Γ Tr |2 − 15〉(3,1) = 2(λ2
1 − λ1λ2 + λ2

2)Tr |2 − 15〉(3,1) + (5λ1 − λ2)(λ1 + λ2)Tr |1 − 15〉(3,1)

+6λ1(λ1 + λ2)
(

Tr O†i
a O

a
jO

†j
b O

c
i + Tr O†i

b O
c
jO

†j
a O

a
i

)

= 2(λ2
1 + 5λ1λ2 + 7λ2

2)Tr |2 − 15〉(3,1) + (5λ1 − λ2)(λ1 + λ2)Tr |1 − 15〉(3,1)

The application of the mixing operator on the states Tr |1−15〉(3,1) and Tr |2−15〉(3,1)

produces structures which we cannot immediately match with the basis states. This comes

from the fact that there are more structures than the linearly independent ones. There

are 6 ways to organize the R-symmetry indices in such a way that they transform in

representation 3 of SU(2)R and two ways to organize the flavor indices that transform in

1 of SU(2). Using the relations from appendix B these 12 structures can be related to the

6 basis structures which come from the decomposition of 15 , 45 and 45 of SU(4). The

eigenvalues are

8λ2
1 + 10λ1λ2 + 8λ2

2 ± (λ1 + λ2)
√

31λ2
1 − 46λ1λ2 + 31λ2

2 . (5.3)

For physical real values of λ1, λ2 the eigenvalues are degenerate only for λ1 = −λ2 = λ. In

this case our result reduces to the ABJM one [47] and the two operators in (5.2) have the

same anomalous dimension, 6λ2. In all the other cases the degeneracy is lifted.

5.2 Operators in (1,3)

The operators in representation (1,3), similarly to the previous case, appear also in the

decomposition of the 15 of SU(4). As in the (3,1), we get only two operators

Tr |1 − 15〉(1,3) = Tr O†i
a O

a
iO

†j
b O

b
k − trace ,

Tr |2 − 15〉(1,3) = Tr O†j
b O

a
i O

†i
a O

b
k − trace . (5.4)

Again using the relations from the appendix B we obtain

Γ Tr |1 − 15〉(1,3) = 2(3λ2
1 − λ1λ2 + λ2

2)Tr |1 − 15〉(1,3)

+(λ1 + λ2)(5λ1 + 7λ2)Tr |2 − 15〉(1,3) ,

Γ Tr |2 − 15〉(1,3) = 2(3λ2
2 − λ1λ2 + λ2

1)Tr |2 − 15〉(1,3)

+(λ1 + λ2)(5λ2 + 7λ1)Tr |1 − 15〉(1,3) . (5.5)

The eigenvalues are:

2(2λ2
1 + λ1λ2 + 2λ2

2) ± (λ1 + λ2)
√

3(13λ2
1 + 22λ1λ2 + 13λ2

2). (5.6)

As in the previous case the mixing and the anomalous dimensions reduce to the ABJM

ones [47] in the limit λ1 = −λ2, otherwise the degeneracy is lifted.
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5.3 Operators in (3,3)

The (3,3) case is a bit more involved. As we can see in the list (D.2) there are nine

structures transforming in (3,3) which come from the decomposition of the length four

structures of SU(4). Two of them coming from 45 and 45, due to the antisymmetrization,

do not correspond to any operators. From the remaining seven structures the four coming

from 15 of SU(4) correspond to two trace invariant operators. Altogether we have the

following basis for the operators in (3,3).5

Tr |1 − 15〉(3,3) = Tr O†i
a O

a
iO

†j
b O

c
k − trace ,

Tr |2 − 15〉(3,3) = Tr O†j
b O

a
iO

†i
a O

c
k − trace ,

Tr |3 − 20〉(3,3) = Tr
(

O
†[i
(b O

[a
(kO

†l]
e)O

d]
m) − traces

)

ǫadǫ
ceǫilǫ

jm

= 4 Tr O
†[i
(b O

[a
(kO

†j]
a) O

c]
i) − Tr |1 − 15〉(3,3) + Tr |2 − 15〉(3,3) − traces ,

Tr |4 − 84〉(3,3) = Tr
(

O
†(j
(b O

[a
[iO

†m)
e) O

d]
l] − traces

)

ǫadǫ
ceǫilǫkm

= 4 Tr O
†(j
(b O

[a
[iO

†i)
a) O

c]
k] −

1

3
Tr |1 − 15〉(3,3) −

1

3
Tr |2 − 15〉(3,3) − traces ,

Tr |5 − 84〉(3,3) = Tr
(

O
†[i
[a O

(c
(kO

†l]
d] O

e)
m) − traces

)

ǫadǫbeǫilǫ
jm

= 4 Tr O
†[j
[b O

(a
(i O

†i]
a] O

c)
k) −

1

3
Tr |1 − 15〉(3,3) −

1

3
Tr |2 − 15〉(3,3) − traces .

(5.7)

The first number enumerates the operators and the second one gives the representation

of SU(4) to which it corresponds. The states Tr |1 − 15〉(3,3) and Tr |2 − 15〉(3,3) in the

definition of the last three operators come from the decomposition of the traces of the

SU(4) operators, 20 and 84.

To obtain the mixing matrix of anomalous dimensions we apply the Hamiltonian (4.4)
to the above basis states. In general the result will contain structures which do not match
with the five basis operators in the list(5.7). We used the relations listed in appendix A.
The mixing matrix is

0

B

B

B

B

B

@

2
3

`

7λ2
1 + 3λ1λ2 + 5λ2

2

´

1
3

(λ1 + λ2) (7λ1 + 5λ2) 0 − 8
3
λ1(λ1 + λ2) − 8

3
λ1(λ1 + λ2)

1
3

(λ1 + λ2) (5λ1 + 7λ2)
2
3

`

5λ2
1 + 3λ1λ2 + 7λ2

2

´

0 − 8
3
λ2(λ1 + λ2) − 8

3
λ2(λ1 + λ2)

0 0 2(λ1 − λ2)
2 2(λ2

1 − λ2
2) −2(λ2

1 − λ2
2)

−(λ1 + λ2)(2λ1 + λ2) −(λ1 + λ2)(λ1 + 2λ2) −λ2
1 + λ2

2 3(λ1 + λ2)
2 (λ1 + λ2)

2

−(λ1 + λ2)(2λ1 + λ2) −(λ1 + λ2)(λ1 + 2λ2) −λ2
1 + λ2

2 (λ1 + λ2)
2 3(λ1 + λ2)

2

1

C

C

C

C

C

A

In the ABJM-limit, λ1 = −λ2 = λ, the eigenstates and their corresponding eigenvalues

5In principle we can write two operators which would correspond to the decomposition of 20, the one

with upper indices symmetrized and lower antisymmetrized and vice versa. By use of the relations in

appendix A one can show that one of these two structures can be written as a linear combination of the

remaining one, Tr |1 − 15〉(3,3) and Tr |2 − 15〉(3,3).
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are [47]

Tr |1 − 15〉(3,3) : 6λ2 ,

Tr |2 − 15〉(3,3) : 6λ2 ,

Tr |3 − 20〉(3,3) : 8λ2 ,

Tr |4 − 84〉(3,3) : 0 ,

Tr |5 − 84〉(3,3) : 0 . (5.8)

There are other particular values of λ1, λ2. For λ1 = λ2 the theory is still parity invariant,

but we don’t find any degeneracy pairs among the eigenstates which would map one into

each other under the parity transformation. For the values of λ1, λ2 outside the regime

λ1 6= −λ2 we can find degeneracy among the eigenvalues of the mixing matrix, but since

the theory is not parity invariant the operators with the same anomalous dimensions do

not form parity pairs. These results suggest that the ABJM integrability is broken for

generic values of λ1 and λ2.

5.4 Integrability and degeneracy

Let us try to get some conclusions related to the integrability of the system. As we

claimed at the beginning of this section a generic feature of integrability is the presence of

degeneracy pairs [7, 37]. Namely, the existence of couples of operators which have the same

anomalous dimension and which are mapped one into each other by the parity operator P.

In the ABJM spin chain the first example of degeneracy pairs is in the set of length four

operators: they are the operators in the adjoint representation of SU(4). In this section we

checked that all the SU(2)R × SU(2) operators which are contained in the decomposition

of the ABJM degeneracy pairs are no longer degeneracy pairs for generic k1, k2. This fact

could be interpreted as a weak evidence of the absence of integrability of the system for

k1 6= −k2.

Let us explain why this is just a weak evidence. First of all the parity symmetry is

broken by the Hamiltonian (4.4) for generic values of k1, k2. A nice observation is that

parity is restored for k1 = ±k2. One of these two points is the ABJM limit where degeneracy

pairs appear and the system is integrable. The other point is still parity invariant but there

is no degeneracy in the anomalous dimensions. Even this observation is not conclusive:

the original eigenvectors of the ABJM mixing matrix are no longer eigenvectors of the

new Hamiltonian. The new eigenvectors do not form pairs under parity, they are actually

parity eigenvectors and we cannot claim that integrability is broken because they do not

have the same anomalous dimension. To say something stronger about the integrability

of the theory one should compute for example the mixing of longer operators, or directly

compute the integrable Hamiltonian associated to the SU(2)R ×SU(2) spin chain, but also

in this case the claim could be not definitive.

Even with all these subtleties in mind we would like to take the lifting of the degeneracy,

which is present in the ABJM limit, as a hint against the integrability of the system. Of

course, a more rigorous analysis is required.
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6 Conclusions

In this note we started the analysis of the deformed integrable Chern-Simons theories. As

a first example we considered the ABJM theory with arbitrary Chern-Simons levels k1,

k2. We constructed the complete two loop mixing operator for the bosonic scalar sector of

the theory and we computed the anomalous dimension for some length four operators. We

observed that the degeneracy of anomalous dimensions which is present in the integrable

limit (the ABJM theory) disappears for generic k1and k2. We interpreted this fact as a

weak evidence of the absence of integrability for these theories, namely, when k1 + k2 6= 0

the ABJM integrability seems to be destroyed. A possible future direction could be to start

a deeper investigation of the integrability of these theories, in field theory and maybe in

the IIA string dual, to support or contradict our conclusions.

Another nice application of the ideas presented in this note could be a more general

analysis of the integrability of Chern-Simons quiver gauge theories. For example it would

be nice to see what happens to the integrable properties of Chern-Simons theories that

come by orbifolding ABJM, once we allow non orbifold values for the various ki. We hope

to come back to this problem in the near future.

We hope to have convinced the reader that three dimensional Chern-Simons theories

are a nice laboratory to study integrability, and in a sense, due to the quartic interactions

and the presence of Chern-Simons levels, they allow a perturbative weak coupling analysis

of more general deformations than the four dimensional examples.
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A Relations among the operator structures of (3,3)

If we hold one type of the coefficients fixed we can can write down six structures corre-

sponding to representation 3 of the other type of coefficients.

|1〉3 = O†
aO

aO†
bO

c − trace

|2〉3 = O†
bO

aO†
aO

c − trace

|3〉3 = O†
bO

cO†
aO

a − trace

|4〉3 = O†
aO

cO†
bO

a − trace

|5〉3 = O†
(bO

aO†
e)O

dǫadǫ
ce

|6〉3 = O†
aO

(cO†
dO

e)ǫadǫbe (A.1)
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From the group theory computation we know that there should be only three indepen-

dent structures transforming in the representation 3.

2⊗ 2⊗ 2 ⊗ 2 = 12 ⊕ 33 ⊕ 5 (A.2)

If we consider the following relations

O†
bO

cO†
aO

a = ǫbeǫ
adO†eOcO†

aOd

=
(

δd
b δ

a
e − δa

b δ
d
e

)

O†eOcO†
aOd

= O†aOcO†
aOb −O†dOcO†

bOd

= ǫadǫbeO
†
dO

cO†
aO

e +O†
aO

cO†
bO

a

O†
bO

cO†
aO

a = ǫaeǫ
cdO†

bOdO
†eOa

=
(

δc
eδ

d
a − δc

aδ
d
e

)

O†
bOdO

†eOa

= O†
bOaO

†cOa −O†
bOaO

†aOc

= ǫadǫ
ceO†

bO
dO†

eO
a +O†

bO
aO†

aO
c

O†
aO

bO†
cO

a = ǫadǫ
beO†dOeO

†
cO

a

=
(

δe
aδ

b
d − δe

dδ
b
a

)

O†dOeO
†
cO

a

= O†bOaO
†
cO

a −O†aOaO
†
cO

b

= ǫbdǫaeO
†
dO

eO†
cO

a +O†
aO

aO†
cO

b

O†
bO

aO†
aO

c = ǫadǫbeO
†eOdO

†
aO

c

=
(

δa
e δ

d
b − δa

b δ
d
e

)

O†eOdO
†
aO

c

= O†aObO
†
aO

c −O†aOaO
†
bO

c

= ǫadǫbeO
†
dO

eO†
aO

c +O†
aO

aO†
bO

c (A.3)

we can find the following set of the relations among the six structures listed in (A.1)

|1〉3 + |2〉3 − |3〉3 − |4〉3 − 2|5〉3 = 0

|1〉3 − |2〉3 − |3〉3 + |4〉3 − 2|6〉3 = 0

|1〉3 − |2〉3 + |3〉3 − |4〉3 = 0 (A.4)
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Let us write down the structures coming from 15, 20 and 84 of the SU(4) operators.

|1 − 15〉(3,3) = O†i
a O

a
iO

†j
b O

c
k − traces

|2 − 15〉(3,3) = O†j
b O

a
i O

†i
a O

c
k − traces

|6 − 15〉(3,3) = O†j
b O

c
kO

†i
a O

a
i − traces

|7 − 15〉(3,3) = O†i
a O

c
kO

†j
b O

a
i − traces

|3 − 20〉(3,3) =
(

O
†[i
(b O

[a
(kO

†l]
e)O

d]
m) − traces

)

ǫadǫ
ceǫilǫ

jm

|4 − 84〉(3,3) =
(

O
†(j
(b O

[a
[iO

†m)
e) O

d]
l] − traces

)

ǫadǫ
ceǫilǫkm

|5 − 84〉(3,3) =
(

O
†[i
[a O

(c
(kO

†l]
d] O

e)
m) − traces

)

ǫadǫbeǫilǫ
jm (A.5)

The first number is just an enumerating label, the second one gives the multiplet of SU(4)

to which it corresponds. In the case of the last three operators we let the redundant

antisymmetrizing brackets to make it more transparent.

The flavor and R-symmetry indices can be labeled by use of the structures in repre-

sentation 3. Let us adapt the following notation:

|1 − 15〉(3,3) =
(

|1〉3, |1〉3
)

(A.6)

where the first |1〉3 means that the R-symmetry indices correspond to the first structure

in representation 3 of the list (A.1) and the second |1〉3 to the first structure of the corre-

sponding list for the flavor indices.

|1 − 15〉(3,3) =
(

|1〉3, |1〉3
)

, |2 − 15〉(3,3) =
(

|2〉3, |2〉3
)

,

|6 − 15〉(3,3) =
(

|3〉3, |3〉3
)

, |7 − 15〉(3,3) =
(

|4〉3, |4〉3
)

,

|3 − 20〉(3,3) =
(

|5〉3, |6〉3
)

−
1

2

(

|1〉3, |1〉3
)

+
1

2

(

|2〉3, |2〉3
)

−
1

2

(

|3〉3, |3〉3
)

+
1

2

(

|4〉3, |4〉3
)

,

|4 − 84〉(3,3) =
(

|5〉3, |5〉3
)

−
1

6

(

|1〉3, |1〉3
)

−
1

6

(

|2〉3, |2〉3
)

−
1

6

(

|3〉3, |3〉3
)

−
1

6

(

|4〉3, |4〉3
)

,

|5 − 84〉(3,3) =
(

|6〉3, |6〉3
)

−
1

6

(

|1〉3, |1〉3
)

−
1

6

(

|2〉3, |2〉3
)

−
1

6

(

|3〉3, |3〉3
)

−
1

6

(

|4〉3, |4〉3
)

.

(A.7)

We see that it is possible to write down 36 different structures, there are six different ways

to put R-symmetry indices and 6 ways for the flavor indices. Since there are only three

independent structures for one type of indices there are only 9 linear independent structures

if we consider both types of the indices at the same time. In (A.7) we wrote down only

7 linear independent structures, 2 remaining ones correspond to 45 and 45 of SU(4) and

don’t correspond to any trace operators, that’s why we are not considering them.

In general if we act with the Hamiltonian on these structures we will have structures

which not immediately match with the structures in (A.7). Let us go give here the list of

the relations which we used to obtain the mixing matrix in the main text.

We can immediately find the relations

Tr
(

|1〉3 + |3〉3, |5/6〉3
)

= 0 , Tr
(

|2〉3 + |4〉3, |5/6〉3
)

= 0 , (A.8)
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where we used

Tr
(

|1〉3, |5/6〉3
)

= −Tr
(

|3〉3, |5/6〉3
)

, Tr
(

|2〉3, |5/6〉3
)

= −Tr
(

|4〉3, |5/6〉3
)

.

(A.9)
Other relations which we used are

Tr
(

|6〉3, |5〉3
)

= −Tr
(

|5〉3, |6〉3
)

+ 2 Tr
(

|1〉3, |1〉3
)

− 2 Tr
(

|2〉3, |2〉3
)

= Tr |1 − 15〉(3,3) − Tr |2 − 15〉(3,3) − Tr |3 − 20〉(3,3) ,

Tr
(

|1〉3, |3〉3
)

= Tr
(

|3〉3, |1〉3
)

= Tr
(

|2〉3, |2〉3
)

−
1

2
Tr
(

|5〉3, |5〉3
)

−
1

2
Tr
(

|6〉3, |6〉3
)

= −
1

3
Tr |1 − 15〉(3,3) +

2

3
Tr |2 − 15〉(3,3) −

1

2
Tr |4 − 84〉(3,3) −

1

2
Tr |5 − 84〉(3,3) ,

Tr
(

|2〉3, |4〉3
)

= Tr
(

|4〉3, |2〉3
)

= Tr
(

|1〉3, |1〉3
)

−
1

2
Tr
(

|5〉3, |5〉3
)

−
1

2
Tr
(

|6〉3, |6〉3
)

=
2

3
Tr |1 − 15〉(3,3) −

1

3
Tr |2 − 15〉(3,3) −

1

2
Tr |4 − 84〉(3,3) −

1

2
Tr |5 − 84〉(3,3) ,

Tr
(

|1〉3, |2〉3
)

= Tr
(

|3〉3, |4〉3
)

= Tr
(

|1〉3, |1〉3
)

−
1

2
Tr
(

|5〉3, |6〉3
)

−
1

2
Tr
(

|6〉3, |6〉3
)

=
1

3
Tr |1 − 15〉(3,3) +

1

3
Tr |2 − 15〉(3,3) −

1

2
Tr |3 − 20〉(3,3) −

1

2
Tr |5 − 84〉(3,3) ,

Tr
(

|1〉3, |4〉3
)

= Tr
(

|3〉3, |2〉3
)

= Tr
(

|2〉3, |2〉3
)

−
1

2
Tr
(

|5〉3, |5〉3
)

+
1

2
Tr
(

|5〉3, |6〉3
)

=
1

3
Tr |1 − 15〉(3,3) +

1

3
Tr |2 − 15〉(3,3) +

1

2
Tr |3 − 20〉(3,3) −

1

2
Tr |4 − 84〉(3,3) ,

Tr
(

|2〉3, |1〉3
)

= Tr
(

|4〉3, |3〉3
)

= Tr
(

|2〉3, |2〉3
)

+
1

2
Tr
(

|5〉3, |6〉3
)

−
1

2
Tr
(

|6〉3, |6〉3
)

=
1

3
Tr |1 − 15〉(3,3) +

1

3
Tr |2 − 15〉(3,3) +

1

2
Tr |3 − 20〉(3,3) −

1

2
Tr |5 − 84〉(3,3) ,

Tr
(

|2〉3, |3〉3
)

= Tr
(

|4〉3, |1〉3
)

= Tr
(

|1〉3, |1〉3
)

−
1

2
Tr
(

|5〉3, |5〉3
)

−
1

2
Tr
(

|5〉3, |6〉3
)

=
1

3
Tr |1 − 15〉(3,3) +

1

3
Tr |2 − 15〉(3,3) −

1

2
Tr |3 − 20〉(3,3) −

1

2
Tr |4 − 84〉(3,3) .

(A.10)

B Relations among the operator structures of (3,1) and (1,3)

We can write down the singlet structures for the SU(2) indices of the length four structures

in two ways and the decomposition of 2⊗2⊗2⊗2 tells us that there only two singlets. It

means that there are no linear relation among the singlet structures and we can consider

them as the basis structures.

The singlets are

|1〉1 = O†
aO

aO†
bO

b , |2〉1 = O†
aO

bO†
bO

a . (B.1)

Since there are 6 different ways to put the indices corresponding to the representation

3, there are 12 structures which correspond to the structures of the type (3,1) and 12 for

(1,3). Since the relations for (3,1) or (1,3) are similar we concentrate here only on the

(3,1) structures.
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The four of the total six (3,1)-structures come from 15 of ABJM. Let us see how they

look like. Consider |1〉15 + |1〉1 and replace Y A by O†i
a

Y CY †
CY

BY †
A = O†i

a O
a
i O

†j
b O

c
k = ǫbdǫ

jlO†i
a O

a
i O

†d
l O

c
k

= ǫbdǫ
jlO†i

a O
a
i

(

O
†(d
(l O

c)
k) +O

†(d
[l O

c)
k] +O

†[d
(l O

c]
k) +O

†[d
[l O

c]
k]

)

(B.2)

The second term corresponds to the structure which transforms in representation (3,1).

Let us consider it.

1

4
ǫbdǫ

jlO†i
a O

a
i

(

O†d
l O

c
k +O†c

l O
d
k −O†d

k O
c
l −O†c

k O
d
l

)

=
1

4
O†i

a O
a
i

(

O†j
b O

c
k + ǫbdǫ

ceO†j
e O

d
k − ǫjlǫkmO

†m
b Oc

l − ǫbdǫ
jlǫceǫkmO

†m
e Od

l

)

=
1

4
O†i

a O
a
i

(

O†j
b O

c
k + (δe

bδ
c
d − δc

bδ
e
d)O

†j
e O

d
k −

(

δj
mδ

l
k − δj

kδ
l
m

)

O†m
b Oc

l

− (δe
bδ

c
d − δc

bδ
e
d)
(

δj
mδ

l
k − δj

kδ
l
m

)

O†m
e Od

l

=
1

2
δj
kO

†i
a O

a
iO

†m
b Oc

m −
1

4
δj
kδ

c
bO

†i
a O

a
i O

†m
d Od

m (B.3)

Therefore, the four (3,1)-structures descending form the four 15-structures are

|1〉(3,1) = O†i
a O

a
i O

†m
b Oc

m − trace , |2〉(3,1) = O†m
b Oa

i O
†i
a O

c
m − trace ,

|3〉(3,1) = O†m
b Oc

mO
†i
a O

a
i − trace , |4〉(3,1) = O†i

a O
b
mO

†m
c Oa

i − trace . (B.4)

The remaining two structures come from the ABJM multiplet transforming under 45 and

45 of ABJM and do not correspond to any trace invariant operators.

To find the necesarry relations among the 12 different structures of (3,1) we use the

same trick as in the previous section of the appendix. We write

|1〉(3,1) =
(

|1〉3, |1〉1
)

, |2〉(3,1) =
(

|2〉3, |2〉1
)

,

|3〉(3,1) =
(

|3〉3, |1〉1
)

, |4〉(3,1) =
(

|4〉3, |2〉1
)

. (B.5)

If we apply the Hamiltonian to these structures we find structures which do not match

with the above structures. The structures which we need to identify are

O†i
a O

c
iO

†j
b O

a
j +O†i

b O
a
i O

†j
a O

c
j =

(

|2 + 4〉3, |1〉1
)

,

O†i
a O

a
jO

†j
b O

c
i +O†i

b O
c
jO

†j
a O

a
i =

(

|1 + 3〉3, |1〉1
)

. (B.6)

By use of (A.4) we find

O†i
a O

c
iO

†j
b O

a
j +O†i

b O
a
i O

†j
a O

c
j =

(

|2 + 4〉3, |1〉1
)

=
(

|1 + 3〉3, |1〉1
)

= |1〉(3,1) + |3〉(3,1) ,

O†i
a O

a
jO

†j
b O

c
i +O†i

b O
c
jO

†j
a O

a
i =

(

|1 + 3〉3, |2〉1
)

=
(

|2 + 4〉3, |2〉1
)

= |2〉(3,1) + |4〉(3,1). (B.7)
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C The general form of the mixing operator from the six-vertex diagram

The terms in the equation (3.4) are not linearly independent and in the main text of

this article we have chosen a specific choice of the an which allowed to eliminate the

linear dependencies and write the potential only with six terms. It is not necessary to

make a concrete choice. Actually, to obtain the mixing operator of the main text we first

computed the mixing operator starting from the full ansatz of the potential (3.4) and only

then inserted the coefficients an from the solution of V bos
an

= V bos. We put this formulae

into the appendix since it allows the reader to write down the mixing operator in a different

form then in eq. ( 4.4). Which terms in the ansatz V bos
an

are allowed to be set to zero can

be decided looking at the linear relations (3.5).

The mixing operator from the six-vertex diagram derived from the ansatz in eq. (3.4) is

ΓV ⊗V̄ ⊗V =
N2

16π2

(

K V̄ ⊗V
(

3a1K̂
V̄ ⊗V + 3a4K̂

V ⊗V̄ + a2

(

1̂ + K̂P̂ + P̂ K̂
)

+ 3a3P̂
)

+KV ⊗V̄
(

3a5K̂
V̄ ⊗V + 3a8K̂

V ⊗V̄ + a6

(

1̂ + K̂P̂ + P̂ K̂
)

+ 3a7P̂
)

+KP
(

a9K̂
V̄ ⊗V + a12K̂

V ⊗V̄ + a11P̂ + a10K̂P̂ + a17P̂ K̂ + a181̂
)

+ PK
(

a9K̂
V̄ ⊗V + a12K̂

V ⊗V̄ + a11P̂ + a10P̂ K̂ + a171̂ + a18K̂P̂
)

+ 1
(

a9K̂
V̄ ⊗V + a12K̂

V ⊗V̄ + a11P̂ + a101̂ + a17K̂P̂ + a18P̂ K̂
)

+ P
(

3a13K̂
V̄ ⊗V + 3a16K̂

V ⊗V̄ + a14

(

1̂ + K̂P̂ + P̂ K̂
)

+ 3a15P̂
))

. (C.1)

To obtain the ΓV ⊗V̄ ⊗V piece of the dilatation operator one needs to exchange K V̄ ⊗V by

KV ⊗V̄ and additionally the following coefficients

a1 ↔ a8 , a2 ↔ a6 , a3 ↔ a7 ,

a4 ↔ a5 , a9 ↔ a12 , a13 ↔ a16 . (C.2)

Formally, ΓV ⊗V̄ ⊗V looks the same, but PK and KP act now on the V̄ ⊗ V ⊗ V̄ spaces.

D Representations of length four structures

A general length four operator transforming under (2,2)4 of SU(2)R×SU(2) will decompose

into the irreducible representations as follows

(2,2)4 = (1,1)4 ⊕ (1,3)6 ⊕ (1,5)2 ⊕ (3,1)6 ⊕ (3,3)9 ⊕ (3,5)3 ⊕ (5,1)2 ⊕ (5,3)3 ⊕ (5,5)

(D.1)

From [47] we know that in the case of the length four operators in ABJM the integrability

manifests in the degeneracy of the the trace invariant operators transforming in the rep-

resentation 15 of SU(4). In the main text of this article we checked if the degeneracy still

holds among the operators (3,1), (1,3) and (3,3) which descend from those in the 15 of

ABJM in the notation of [47].

From (D.1) we see that there are actually more than 4 structures in each of the rep-

resentations (3,3), (1,3) and (3,1). This comes from the fact that some of them are also
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present in other multiplets. The decomposition of all length four operators of ABJM under

SU(2)R × SU(2) goes as follows

1 → (1,1)

20 → (1,1) + (3,3) + (1,5) + (5,1)

15 → (1,3) + (3,1) + (3,3)

45 → (1,3) + (3,1) + (3,3) + (5,3) + (3,5)

45 → (1,3) + (3,1) + (3,3) + (5,3) + (3,5)

84 → (1,1) + (3,3)2 + (1,5) + (5,1) + (3,5) + (5,3) + (5,5) (D.2)

The structures coming from the 45 and the 4̄5 do not correspond to any trace invariant

operators because they get a minus under cyclic permutation.
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